Skip to main navigation menu Skip to main content Skip to site footer

Operator contamination with spraying equipment during applications to control coffee berry borer Contaminación de operarios con equipos de aspersión durante aplicaciones para el control de la broca del café

How to Cite
Arcila-Moreno, A., Villalba-Gault, D. A., Montoya, E. C., & Benavides Machado, P. (2023). Operator contamination with spraying equipment during applications to control coffee berry borer. Cenicafe Journal, 74(1), e74103. https://doi.org/10.38141/10778/74103




Keywords
Cultivo de café

Hypothenemus hampei

técnicas de aspersión

presión previa retenida

aguilón vertical

elementos de protección personal

Cenicafé

Coffee cultivation

Hypothenemus hampei

spraying techniques

vertical boom

personal protective equipment

Cenicafé

Cultivo do café

Hypothenemus hampei

técnicas de pulverização

pré-pressão retida

equipamento de proteção individual

Cenicafé

Sectión
Articles
Aníbal Arcila-Moreno
Diógenes Alberto Villalba-Gault
Esther Cecilia Montoya
Pablo Benavides Machado

Summary

This research aimed to determine the contamination of spraying equipment on operators during applications to control coffee berry borer. Productive coffee plots were selected at La Catalina Experimental Station in the municipality of Pereira (Risaralda). The evaluated equipment were: hydraulic back sprayer with lever, retained pre-compression 40-100-10, retained pre-compression with vertical sprayers and semi-stationary hydraulic motorized back sprayer. The study was carried out in two moments during the day with five operators at the time. A randomized complete block design with 10 repetitions per equipment was used. Thirty-nine kromekote paper cards were placed on each operator in different parts of a protective suit: cap, operator glasses, mask, overall, gloves and boots. As a colorant, 1% technical methylene blue was used. The cards were digitized and the percentage of the card area covered by the spray and the number of drops per card were determined through a Scilab 5.4.0 image analysis program in Linux. The results showed an exposure to pesticides in all the elements of the protective suit. However, the mask and the operator glasses had the least contamination; while the gloves and the cap had the highest exposure. The hydraulic motorized back sprayer equipment deposits the least amount of product on the operator during spraying. In contrast, the retained pre-compression with vertical sprayers equipment produces the greatest contamination on the operator.

Aníbal Arcila-Moreno, Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Entomología, Cenicafé

Diógenes Alberto Villalba-Gault, Ingeniero agrónomo M.Sc.Independiente

Ingeniero agrónomo M.Sc.

Esther Cecilia Montoya, Federación Nacional de Cafeteros

Investigador Senior. Gerencia Técnica, Federación Nacional de Cafeteros


Pablo Benavides Machado, Centro Nacional de Investigaciones de Café

Investigador Científico III. Disciplina de Entomología, Cenicafé.

References (See)

  1. Airey, D. (1990). Protective clothing: A manufacturer’s viewpoint. Journal of Occupational Accidents, 11(4), 269–275. https://doi.org/10.1016/0376-6349(90)90045-W
  2. Baharuddin, M. R. B., Sahid, I. B., Noor, M. A. B. Mohd., Sulaiman, N., & Othman, F. (2011). Pesticide risk assessment: A study on inhalation and dermal exposure to 2,4-D and paraquat among Malaysian paddy farmers. Journal of Environmental Science and Health, Part B, 46(7), 600–607. https://doi.org/10.1080/03601234.2011.589309
  3. Baldi, I., Lebailly, P., Jean, S., Rougetet, L., Dulaurent, S., & Marquet, P. (2006). Pesticide contamination of workers in vineyards in France. Journal of Exposure Science & Environmental Epidemiology, 16(2), 115–124. https://doi.org/10.1038/sj.jea.7500443
  4. Balloni, S., Caruso, L., Cerruto, E., Emma, G., & Schillaci, G. (2008, september 15-17). A Prototype of Self-Propelled Sprayer to Reduce Operator Exposure in Greenhouse Treatment [International Conference]. Innovation Technology to Empower Safety, Health and Welfare in Agriculture and Agro-food Systems, Ragusa, Italy. http://www.ragusashwa.it/CD_2008/lavori/TOPIC3/orale/BALLONI-CERRUTO-SCHILLACI-3.pdf
  5. Behmer, S. N., Di Prinzio, A. P., Magdalena, J. C., & Striebeck, G. L. (2001). Eficiencia de un equipo de protección personal para aplicaciones fitosanitarias en huertos frutales. Agricultura Técnica, 61(2), 221–228. https://doi.org/10.4067/S0365-28072001000200012
  6. Benavides Machado, P., Gil Palacio, Z. N., Góngora Botero, C., & Arcila Moreno, A. (2013). Manejo integrado de plagas. En Federación Nacional de Cafeteros de Colombia (Ed.), Manual cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura (Vol. 2, pp. 179–214).
  7. Bulacio, L. G., Giuliani, S. L., Panelo, M. S., & Giolito, I. (2007). Seguridad en la aplicación de productos fitosanitarios en cultivos hortícolas y frutícolas. Acta toxicológica argentina, 15(1), 1–7. http://www.scielo.org.ar/pdf/ata/v15n1/v15n1a01.pdf
  8. Bustillo-Pardey, A. E. (2007). El manejo de cafetales y su relación con el control de la broca del café en Colombia. Boletín Técnico Cenicafé, 24, 1–40. http://hdl.handle.net/10778/579
  9. Fishel, F. (2018). PI243 Equipo de Protección Personal para la Manipulación de Pesticidas. University of Florida. https://edis.ifas.ufl.edu/publication/PI243
  10. Flórez, E., Bustillo-Pardey, A. E., & Montoya-Restrepo, E. C. (1997). Evaluación de equipos de aspersión para el control de Hypothenemus hampei con el hongo Beauveria bassiana. Revista Cenicafé, 48(2), 92–98.
  11. Gilbert, A. J., & Bell, G. J. (1990). Test methods and criteria for selection of types of coveralls suitable for certain operations involving handling or applying pesticides. Journal of Occupational Accidents, 11(4), 255–268. https://doi.org/10.1016/0376-6349(90)90044-V
  12. Jaramillo, A. (1982). Microclima en cafetales a libre exposición solar y bajo sombrío. En Centro Nacional de Investigaciones de Café (Ed.), Taller sobre roya del cafeto Hemileia vastatrix Berk y Br. (pp. 1–20). Cenicafé. http://hdl.handle.net/10778/741
  13. Jaramillo, A., & Gómez-Gómez, L. (1989). Microclima en cafetales a libre exposición solar y bajo sombrío. Revista Cenicafé, 40(3), 65–79.
  14. Lander, F., & Hinke, K. (1992). Indoor application of anti-cholinesterase agents and the influence of personal protection on uptake. Archives of Environmental Contamination and Toxicology, 22(2), 163–166. https://doi.org/10.1007/BF00213280
  15. Leiva, P. D. (1997). Productos fitosanitarios: Su correcto manejo. INTA.
  16. MacFarlane, E., Carey, R., Keegel, T., El-Zaemay, S., & Fritschi, L. (2013). Dermal Exposure Associated with Occupational End Use of Pesticides and the Role of Protective Measures. Safety and Health at Work, 4(3), 136–141. https://doi.org/10.1016/j.shaw.2013.07.004
  17. Machado Neto, J. (1990). Quantificação e controle da exposição dérmica de aplicadores de agrotóxicos na cultura estaqueada de tomate, na região de Cravinhos-SP. [Tesis de Doctorado]. Universidade Estadual Paulista.
  18. Machera, K., Goumenou, M., Kapetanakis, E., Kalamarakis, A., & Glass, C. R. (2003). Determination of Potential Dermal and Inhalation Operator Exposure to Malathion in Greenhouses with the Whole Body Dosimetry Method. The Annals of Occupational Hygiene, 47(1), 61–70. https://doi.org/10.1093/annhyg/mef097
  19. Matthews, G. (1987). Métodos para la aplicación de pesticidas. Compañía Editorial Continental.
  20. Matthews, G. (2002). Operator exposure to pesticides. Pesticide Outlook, 13(6), 233–237. https://doi.org/10.1039/b211168n
  21. Medina-Escobar, M. L., Rodríguez-Zamora, M. G., & Zamora-Rodríguez, P. (2014). Comparación de métodos de exposición dermal a plaguicidas en una muestra de floricultores y productores de palmito y chayote en Costa Rica. Revista Tecnología en Marcha, 27, 5–21. https://doi.org/10.18845/tm.v0i0.1651
  22. Montoya, D. F., & Villalba Gault, D. A. (2013). Evaluación física de las aplicaciones con diferentes equipos de aspersión para el manejo de la broca. Revista Cenicafé, 64(2), 48–58. https://biblioteca.cenicafe.org/handle/10778/530
  23. Nigg, H. N., Stamper, J. H., & Queen, R. M. (1986). Dicofol exposure to Florida citrus applicators: Effects of protective clothing. Archives of Environmental Contamination and Toxicology, 15(1), 121–134. https://doi.org/10.1007/BF01055257
  24. Nurulain, M. U., Syed Ismail, S. N., Emilia, Z. A., & Vivien, H. (2017). Pesticide application, dermal exposure risk and factors influenced distribution on different body parts among agriculture workers. Malaysian Journal of Public Health Medicine, 1, 123–132.
  25. Obendorf, S. K., Csiszár, E., Maneefuangfoo, D., & Borsa, J. (2003). Kinetic Transport of Pesticide from Contaminated Fabric Through a Model Skin. Archives of Environmental Contamination and Toxicology, 45(2), 283–288. https://doi.org/10.1007/s00244-003-0211-5
  26. Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2002). Guías sobre buenas prácticas para la aplicación terrestre de plaguicidas. FAO. https://www.fao.org/3/Y2767S/Y2767S00.htm
  27. Prinzio, A. di, Behmer, S., Magdalena, J., & Chersicla, G. (2010). Effect of pressure on the quality of pesticide application in orchards. Chilean Journal of Agricultural Research, 70(4), 674–678. https://www.chileanjar.cl/abstractms.php?cmd=ABSTRACT&lang=ENG&id=3607
  28. Stewart, P. A., Fears, T., Kross, B., Ogilvie, L., & Blair, A. (1999). Exposure of farmers to phosmet, a swine insecticide. Scandinavian Journal of Work, Environment & Health, 25(1), 33–38. https://doi.org/10.5271/sjweh.380
  29. Villalba-Gault, D. A. (2008). Tecnología de aplicación y equipos de aspersión de agroquímicos. En A. E. Bustillo (Ed.), Los insectos y su manejo en la caficultura colombiana (pp. 201–225). Cenicafé.
  30. Yarpuz-Bozdogan, N., & Bozdogan, A. M. (2009). Assessment of dermal bystander exposure in pesticide applications using different types of nozzles. Journal of Food, Agriculture & Environment, 7(2), 678–682. https://www.wflpublisher.com/Abstract/2316

Most read articles by the same author(s)