Skip to main navigation menu Skip to main content Skip to site footer

Effect of salicylic acid on the phenological ripening of coffee fruits in preharvest Efecto del ácido salicílico sobre la maduración fenológica de frutos de café en pre-cosecha

How to Cite
Unigarro, C. A., Imbachí, L. C., Pabón, J. P., Osorio, V., & Acuña-Zornosa, J. R. (2021). Effect of salicylic acid on the phenological ripening of coffee fruits in preharvest. Cenicafe Journal, 72(2), e72205. https://doi.org/10.38141/10778/72205




Keywords
Coffea arabica

desarrollo de frutos

inhibidor de etileno

retención de recolección

Coffea arabica

fruit development

ethylene inhibitor

delaying a picking

Coffea arabica

desenvolvimento de frutas

inibidor de etileno

retenção de colheita

Sectión
Articles

Summary

In the present study, the effect of salicylic acid (SA) in two application times on the phenological maturation of coffee fruits by delaying a picking pass during pre-harvest was evaluated. At Paraguaicito and La Catalina Experiment Stations on Castillo® variety coffee, six treatments were installed corresponding to three doses of SA [0.5, 1.0, and 2.0 mmol L-1] applicated during two times [one week before and during the main picking event (ERP)] with a retained picking pass; plus, two controls without application of inhibitors [C1: normal picking, C2: picking with pass retention], applied to parcels under a completely random design. In the samplings at the branch level and sample level of 1.0 kg, the variables: percentage of green, pintones, ripe, over-ripe, and dry fruits were evaluated, in addition to the percentage of fallen fruits at the branch level, the production of cherry coffee per parcel and the quality of the drink according to the SCA scale. The results showed that the SA applied one week before the ERP at a dose of 1.0 mmol L-1 and in the week of the ERP at a dose of 2.0 mmol L-1 delayed the phenological

development of the harvestable and dried fruits at the branch level, but not at the sample level at La Catalina, while in Paraguaicito there was no effect at any level. This indicates the low effect of SA on ripening when harvesting retention is extended for more than 20 days after the ERP, and therefore its use is not recommended under these conditions. The production and SCA score did not show any significant effect associated to the effect of SA.

Carlos Andrés Unigarro, Cenicafé

Investigador Científico I, Disciplina de Fisiología Vegetal, Centro Nacional de Investigaciones de Café, Cenicafé.


Luis Carlos Imbachí, Cenicafé

Asistente de Investigación. Disciplina de Biometría, Cenicafé.


Jenny Paola Pabón, Cenicafé

Asistente de Investigación, Disciplina de Calidad, Cenicafé


Valentina Osorio, Cenicafé

Investigador Científico I, Disciplina de Calidad, Cenicafé


José Ricardo Acuña-Zornosa, Cenicafé

Investigador Científico III, Disciplina de Fisiología Vegetal, Centro Nacional de Investigaciones de Café, Cenicafé.


References (See)

  1. Abeles, F. B., Morgan, P. W., & Saltveit, J. (1992). Ethylene in Plant Biology (2nd ed). Academic Press. https://doi.org/10.1016/C2009-0-03226-7
  2. Arcila, J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology, 141(1), 19–27. https://doi.org/10.1111/j.1744-7348.2002.tb00191.x
  3. Babalar, M., Asghari, M., Talaei, A., & Khosroshahi, A. (2007). Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistry, 105(2), 449–453. https://doi.org/10.1016/j.foodchem.2007.03.021
  4. Balaguera, H. E., Salamanca, F. A., García, J. C., & Herrera, A. (2014). Etileno y retardantes de la maduración en la poscosecha de productos agrícolas. Una revisión. Revista Colombiana de Ciencias Hortícolas, 8(2), 302–313. https://doi.org/10.17584/rcch.2014v8i2.3222
  5. Barbosa, D. H. S. G., Barbosa, D. S. G., Ribeiro, J. N., & Lauar, A. N. (2011). Efeito do Mathury na uniformidade de maturação do cafeeiro. 37 Congresso Brasileiro de Pesquisas Cafeeiras, Poços de Caldas, Minas Gerais, Brasil. http://www.sbicafe.ufv.br:80/handle/123456789/6173
  6. Berlanga, D. I., Guerrero, V. M., & Ornelas, J. J. (2011). Productos alternativos a la aminoetoxivinilglicina para el control de la producción de etileno en manzana 'Golden Delicious'. Tecnociencia, 5(2), 83–89. https://vocero.uach.mx/index.php/tecnociencia/article/view/698
  7. Brunner, E., Bathke, A. C., & Konietschke, F. (2018). Rank and Pseudo-Rank Procedures for Independent Observations in Factorial Designs: Using R and SAS. Springer International Publishing. https://doi.org/10.1007/978-3-030-02914-2
  8. Camayo, G. C., Chaves, B., Arcila, J., & Jaramillo, A. (2003). Desarrollo floral del cafeto y su relación con las condiciones climáticas de Chinchiná, Caldas. Revista Cenicafé, 54(1), 35–49. http://hdl.handle.net/10778/264
  9. Chamkha, M., Cathala, B., Cheynier, V., & Douillard, R. (2003). Phenolic Composition of Champagnes from Chardonnay and Pinot Noir Vintages. Journal of Agricultural and Food Chemistry, 51(10), 3179–3184. https://doi.org/10.1021/jf021105j
  10. Cui, K., Shu, C., Zhao, H., Fan, X., Cao, J., & Jiang, W. (2020). Preharvest chitosan oligochitosan and salicylic acid treatments enhance phenol metabolism and maintain the postharvest quality of apricots (Prunus armeniaca L.). Scientia Horticulturae, 267, 109334. https://doi.org/10.1016/j.scienta.2020.109334
  11. DaMatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2010). Coffee: Environment and Crop Physiology. En F. DaMatta (Ed.), Ecophysiology of tropical tree crops (pp. 181–216). Nova Science Publishers.
  12. Davies, C., & Böttcher, C. (2014). Other hormonal signals during ripening. En P. Nath, M. Bouzayen, A. K. Mattoo, & J. C. Pech (Eds.), Fruit ripening: Physiology, signalling and genomics. (pp. 202–216). CABI, Oxfordshire.
  13. Davis, A. P., Tosh, J., Ruch, N., & Fay, M. F. (2011). Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Botanical Journal of the Linnean Society, 167(4), 357–377. https://doi.org/10.1111/j.1095-8339.2011.01177.x
  14. Dias, R. E. B. A., Silva, F. M. da, Cunha, J. P. B., Avelar, R. C., & Fernandes, F. C. (2014). Eficiência da colheita mecanizada do café com uso do inibidor de biossíntese de etileno. Coffee Science, 9(4), 527–536. http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/746
  15. El-Sharkawy, I., Kim, W. S., El-Kereamy, A., Jayasankar, S., Svircev, A. M., & Brown, D. C. W. (2007). Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). Journal of Experimental Botany, 58(13), 3631–3643. https://doi.org/10.1093/jxb/erm213
  16. Elwan, M. W. M., & El-Hamahmy, M. A. M. (2009). Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Scientia Horticulturae, 122(4), 521–526. https://doi.org/10.1016/j.scienta.2009.07.001
  17. Farah, A., Monteiro, M. C., Calado, V., Franca, A. S., & Trugo, L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98(2), 373–380. https://doi.org/10.1016/j.foodchem.2005.07.032
  18. Federación Nacional de Cafeteros. (2020). Estadísticas Cafeteras. https://federaciondecafeteros.org/wp/estadisticas-cafeteras/
  19. Giovannoni, J. J. (2004). Genetic Regulation of Fruit Development and Ripening. The Plant Cell, 16(suppl_1), S170–S180. https://doi.org/10.1105/tpc.019158
  20. Hayat, Q., Hayat, S., Irfan, Mohd., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68(1), 14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005
  21. International Coffee Organization. (2019). Trade Statistics Tables. http://www.ico.org/trade_statistics.asp?section=Statistics
  22. Karlidag, H., Yildirim, E., & Turan, M. (2009). Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. Journal of Plant Nutrition and Soil Science, 172(2), 270–276. https://doi.org/10.1002/jpln.200800058
  23. Lashermes, P., Andrade, A. C., & Etienne, H. (2008). Genomics of Coffee One of the World’s Largest Traded Commodities. En P. H. Moore & R. Ming (Eds.), Genomics of Tropical Crop Plants (Vol. 1, pp. 203–226). Springer New York. https://doi.org/10.1007/978-0-387-71219-2_9
  24. Lelievre, J.-M., Latche, A., Jones, B., Bouzayen, M., & Pech, J.-C. (1997). Ethylene and fruit ripening. Physiologia Plantarum, 101(4), 727–739. https://doi.org/10.1111/j.1399-3054.1997.tb01057.x
  25. Leslie, C. A., & Romani, R. J. (1986). Salicylic acid: A new inhibitor of ethylene biosynthesis. Plant Cell Reports, 5(2), 144–146. https://doi.org/10.1007/BF00269255
  26. Leslie, C. A., & Romani, R. J. (1988). Inhibition of Ethylene Biosynthesis by Salicylic Acid. Plant Physiology, 88(3), 833–837. https://doi.org/10.1104/pp.88.3.833
  27. Lo’ay, A. A. (2017). Preharvest salicylic acid and delay ripening of ‘superior seedless’ grapes. Egyptian Journal of Basic and Applied Sciences, 4(3), 227–230. https://doi.org/10.1016/j.ejbas.2017.04.006
  28. Marín, S. M., Arcila, A., Montoya, E. C., & Oliveros, C. E. (2003). Relación entre el estado de madurez del fruto del café y las características de beneficio, rendimiento y calidad de la bebida. Revista Cenicafé, 54(4), 297–315. http://hdl.handle.net/10778/254
  29. Marzouk, H. A., & Kassem, H. A. (2011). Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Scientia Horticulturae, 130(2), 425–430. https://doi.org/10.1016/j.scienta.2011.07.013
  30. Pérez-Llorca, M., Muñoz, P., Müller, M., & Munné-Bosch, S. (2019). Biosynthesis, Metabolism and Function of Auxin, Salicylic Acid and Melatonin in Climacteric and Non-climacteric Fruits. Frontiers in Plant Science, 10, 136. https://doi.org/10.3389/fpls.2019.00136
  31. Pereira, L. F. P., Galvão, R. M., Kobayashi, A. K., Cação, S. M. B., & Vieira, L. G. E. (2005). Ethylene production and acc oxidase gene expression during fruit ripening of Coffea arabica L. Brazilian Journal of Plant Physiology, 17(3), 283–289. https://doi.org/10.1590/S1677-04202005000300002
  32. Périn, C., Gomez-Jimenez, M., Hagen, L., Dogimont, C., Pech, J.-C., Latché, A., Pitrat, M., & Lelièvre, J.-M. (2002). Molecular and Genetic Characterization of a Non-Climacteric Phenotype in Melon Reveals Two Loci Conferring Altered Ethylene Response in Fruit. Plant Physiology, 129(1), 300–309. https://doi.org/10.1104/pp.010613
  33. Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit Ripening Phenomena–An Overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841
  34. Puerta, G. I. (2000) Influencia de los granos de café cosechados verdes, en la calidad física y organoléptica de la bebida. Revista Cenicafé, 51(2), 136–150. http://hdl.handle.net/10778/65
  35. Rodrigues, J. P. B. (2015). Efeito do mathurytm e ethephon na maturação dos frutos e qualidade da bebida de café [Tesis de maestría]. Universidade Estadual do Norte Fluminense Darcy Ribeiro. http://www.sbicafe.ufv.br/handle/123456789/11284
  36. Sabin, T. E., & Stafford, S. G. (1990). Assessing the need for transformation of response variables (Núm. 20; Special publication, p. 31). Forest Research Laboratory, Oregon State University. http://hdl.handle.net/1957/32209
  37. Ságio, S. A., Barreto, H. G., Lima, A. A., Moreira, R. O., Rezende, P. M., Paiva, L. V., & Chalfun-Junior, A. (2014). Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway. Planta, 239(5), 951–963. https://doi.org/10.1007/s00425-014-2026-1
  38. Ságio, S. A., Lima, A. A., Barreto, H. G., de Carvalho, C. H. S., Paiva, L. V., & Chalfun-Junior, A. (2013). Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiologiae Plantarum, 35(11), 3091–3098. https://doi.org/10.1007/s11738-013-1342-6
  39. Sanz-Uribe, J. R., & Duque, H. (2020). Evaluación de la Derribadora Selectiva de Café Brudden DSC18. Revista Cenicafé, 71(2), 92–104. https://doi.org/10.38141/10778/71207
  40. Sanz, J. R., Oliveros, C. E., Duque, H., Mejía, C. G., Benavides, P., & Rivera, R. D. (2018). Retención de pases: una opción para mejorar la productividad de la mano de obra en la cosecha de café. Avances Técnicos Cenicafé, 488, 1–8. http://hdl.handle.net/10778/4218
  41. SAS Institute Inc. (2018). SAS/STAT® 15.1 User’s Guide. SAS Institute Inc.
  42. Scudeler, F., Raetano, C. G., Araújo, D. de, & Bauer, F. C. (2004). Cobertura da pulverização e maturação de frutos do cafeeiro com ethephon em diferentes condições operacionais. Bragantia, 63(1), 129–139. https://doi.org/10.1590/S0006-87052004000100013
  43. Serna, L., Torres, L. S., & Ayala, A. A. (2012). Effect of pre- and postharvest application of 1-methylcyclopropene on the maturation of yellow pitahaya (Selenicerus megalanthus Haw). Vitae, 19(1), 49–59.
  44. Shafiee, M., Taghavi, T. S., & Babalar, M. (2010). Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Scientia Horticulturae, 124(1), 40–45. https://doi.org/10.1016/j.scienta.2009.12.004
  45. Da Silva, F. C., Da Silva, F. M., Sales, R. S., Ferraz, G. A., & De Barros, M. M. (2017). Variáveis meteorológicas e da umidade do solo na força de desprendimento dos frutos do café. Coffee Science, 12(4), 480–485. http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1351
  46. Silva, R. A., Matsumoto, S. N., Marques, G., de Oliveira, P. N., & de Oliveira, L. S. (2013). Efeito do Mathury® na maturação de frutos de café variedade Catuaí Vermelho. Cultivando o Saber, 6(3), 66–74.
  47. Srivastava, M. K., & Dwivedi, U. N. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Science, 158(1–2), 87–96. https://doi.org/10.1016/S0168-9452(00)00304-6
  48. Unigarro, C. A., Flórez, C. P., Oliveros, C. E., & Cañón, M. (2018). Efecto de cuatro inhibidores de etileno en la maduración del fruto de café (Coffea arabica L.) durante precosecha. Revista Colombiana de Ciencias Hortícolas, 12(2), 500–507. https://doi.org/10.17584/rcch.2018v12i2.7667
  49. Upegui, G., & Valencia, G. (1972). Anticipación de la maduración de la cosecha de café con aplicaciones de Ethrel. Revista Cenicafé, 23(1), 19–26. http://hdl.handle.net/10778/787
  50. Wang, Y.-Y., Li, B.-Q., Qin, G.-Z., Li, L., & Tian, S.-P. (2011). Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Scientia Horticulturae, 129(2), 183–188. https://doi.org/10.1016/j.scienta.2011.03.021
  51. Winston, E., Hoult, M., Howitt, C., & Shepherd, R. (1992). Ethylene-induced fruit ripening in arabica coffee (Coffea arabica L.). Australian Journal of Experimental Agriculture, 32(3), 401–408. https://doi.org/10.1071/EA9920401
  52. Yamane, M., Abe, D., Yasui, S., Yokotani, N., Kimata, W., Ushijima, K., Nakano, R., Kubo, Y., & Inaba, A. (2007). Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biology and Technology, 44(3), 220–227. https://doi.org/10.1016/j.postharvbio.2006.12.010

Most read articles by the same author(s)

1 2 > >>