Skip to main navigation menu Skip to main content Skip to site footer

NIRS calibration curves for the prediction of chemical compounds of green coffee Validación de curvas de calibración por NIRS para la predicción de compuestos químicos de café almendra

How to Cite
Gómez, C. R., Ortiz, A., Gallego, C., & Echeverri, L. F. (2021). NIRS calibration curves for the prediction of chemical compounds of green coffee. Cenicafe Journal, 72(2), e72204. https://doi.org/10.38141/10778/72204




Keywords
Absorbancia

longitud de onda

café verde

concordancia

cafeína

lípidos totales

trigonelina

azúcares

ácidos grasos

ácidos clorogénicos

Café

Colombia

Cenicafé

Absorbance

wavelength

green coffee

concordance

caffeine

total lipids

trigonelline

sugars

fatty acids

chlorogenic acids

Absorvância

comprimento de onda

café verde

concordância

cafeína

lipídios totais

trigonelina

açúcares

ácidos graxos

ácidos clorogênicos

café

Colômbia

Cenicafé

Sectión
Articles
Claudia Rocío Gómez
Aristófeles Ortiz
Claudia Gallego
Luz Fanny Echeverri

Summary

Near-infrared spectroscopy (NIRS) has been consolidated as a reliable, objective, reproducible, verifiable, inexpensive and low-environmental impact secondary analytical technique. This research aimed to carry out the validation of the equation developed from the NIRS technique for green coffee, which currently predicts 13 chemical compounds (caffeine, trigonelline, total chlorogenic acids, total lipids, fatty acids (palmitic, stearic, oleic, linoleic, linolenic and arachidic), isomers (3-CQA, 4-CQA and 5-CQA) and sucrose). The validation was carried out with 70 samples of Arabica green coffee (Coffea arabica L.), Castillo®, Cenicafé1 and Tabi varieties, produced in the departments of Cauca, Cesar and Caldas, which were analyzed to determine chemical compounds by international methods of analysis of the AOAC and standardized in Cenicafé; the samples were simultaneously analyzed in the NIRS equipment. The concordance between international analytical methods and NIRS was established from descriptive statistical analyses, Blan Altman concordance analysis and Pearson’s correlation between bias and magnitude. The relative error obtained by the NIRS technique for the compounds caffeine, sucrose, total chlorogenic acids, isomers of chlorogenic acids 4-CQA and 5-CQA, total lipids, arachidic, stearic and palmitic fatty acids was lower than 6.0%. The trigonelline compounds and linoleic acid showed an error of 7.0% and oleic acid 10.0%. The results confirm that with the calibration of the curve the NIRS technique can become a secondary analytical method.

Claudia Rocío Gómez, Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Calidad, Centro Nacional de Investigaciones de Café, Cenicafé


Aristófeles Ortiz, Centro Nacional de Investigaciones de Café

Investigador científico I. Disciplina de Fisiología, Cenicafé


Claudia Gallego, Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Calidad, Centro Nacional de Investigaciones de Café, Cenicafé.


Luz Fanny Echeverri, Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Calidad, Centro Nacional de Investigaciones de Café, Cenicafé.


References (See)

  1. Alessandrini, L., Romani, S., Pinnavaia, G., & Rosa, M. D. (2008). Near infrared spectroscopy: An analytical tool to predict coffee roasting degree. Analytica Chimica Acta, 625(1), 95–102. https://doi.org/10.1016/j.aca.2008.07.013
  2. Alomar, D., & Fuchslocher, R. (1998). Fundamentos de la espectroscopia de reflectancia en el infrarojo cercano (NIRS) como método de análisis de forrajes. Agro sur, 26(1), 88–104. https://doi.org/10.4206/agrosur.1998.v26n1-11
  3. Barbin, D. F., Felicio, A. L. de S. M., Sun, D.-W., Nixdorf, S. L., & Hirooka, E. Y. (2014). Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Research International, 61, 23–32. https://doi.org/10.1016/j.foodres.2014.01.005
  4. Bolaños Alfaro, J. D. (2016). El método NIR combinado con el análisis quimiométrico PLS-da para determinar la adulteración del aceite de oliva con aceite de girasol. Pensamiento Actual, 16(26), 163–172. https://doi.org/10.15517/pa.v16i26.25764
  5. Büning-Pfaue, H. (2003). Analysis of water in food by near infrared spectroscopy. Food Chemistry, 82(1), 107–115. https://doi.org/10.1016/S0308-8146(02)00583-6
  6. Cao, N. (2013). Calibration optimization and efficiency in near infrared spectroscopy [Tesis de Doctorado]. Iowa State University. https://lib.dr.iastate.edu/etd/13199
  7. Cozzolino, D. (2002). Uso de la espectroscopía de reflectancia en el infrarrojo cercano (NIRS) en el análisis de alimentos para animales. Agrociencia, 6(2), 25–32. http://www.fagro.edu.uy/~agrociencia/VOL6/2/p25-32.pdf
  8. Echeverri-Giraldo, L. F., Ortiz, A., Gallego, C. P., & Imbachí, L. C. (2020). Caracterización de la fracción lipídica del café verde en variedades mejoradas de Coffea arabica L. Revista Cenicafé, 71(2), 39–52. https://doi.org/10.38141/10778/71203
  9. Esteban-Díez, I., González-Sáiz, J. M., & Pizarro, C. (2004). Prediction of Roasting Colour and other Quality Parameters of Roasted Coffee Samples by near Infrared Spectroscopy. A Feasibility Study. Journal of Near Infrared Spectroscopy, 12(5), 287–297. https://doi.org/10.1255/jnirs.437
  10. García Olmo, J. (2002). Clasificación y autentificación de canales de cerdo ibérico mediante espectroscopía en el infrarrojo cercano (NIRS) [Tesis de Doctorado], Universidad de Córdoba. http://hdl.handle.net/10396/2340
  11. Giavarina, D. (2015). Understanding Bland Altman analysis. Biochemia Medica, 25(2), 141–151. https://doi.org/10.11613/BM.2015.015
  12. Givens, D. I., De Boever, J. L., & Deaville, E. R. (1997). The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans. Nutrition Research Reviews, 10(1), 83–114. https://doi.org/10.1079/NRR19970006
  13. Holscher, W., Vitzthum, O. G., & Steinhart, H. (1990). Identification and sensorial evaluation of aroma-impact-compounds in roasted Colombian coffee. Café Cacao The, 34(3), 205–212.
  14. Huck, C. W., Guggenbichler, W., & Bonn, G. K. (2005). Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry. Analytica Chimica Acta, 538(1), 195–203. https://doi.org/10.1016/j.aca.2005.01.064
  15. Jiménez, P. A. (2007). Identificación de harinas de yuca (Manihot esculenta crantz) con alto contenido proteico mediante espectroscopia de infrarrojo cercano (NIRS) [Tesis de pregrado]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/2473
  16. Marin, C., & Puerta, G. I. (2008). Contenido de ácidos clorogénicos en granos de Coffea arabica L. y C. Canephora, según el desarrollo del fruto. Revista Cenicafé, 59(1), 7–28. http://hdl.handle.net/10778/60
  17. Massart, D. L., Vandeginste, B. G. M., Deming, S. M., & Kaufman, L. (Eds.). (1988). Chemometrics: A textbook. Elsevier.
  18. Mongay Fernández, C. (2005). Quimiometría. Universidad de Valencia.
  19. Ocampo, J. F. (2015). Estandarización de las curvas de calibración por la metodología NIR y la química húmeda en las materias primas y carnes frías para la optimización de las respuestas de análisis [Tesis de especialización]. Corporación Universitaria Lasallista. http://hdl.handle.net/10567/1571
  20. Osborne, B. G., Fearn, T., & Hindle, P. T. (1993). Practical NIR spectroscopy with applications in food and beverage analysis (2a ed.). Longman Scientific & Technical?; Wiley.
  21. Pizarro, C., Esteban-Díez, I., González-Sáiz, J.-M., & Forina, M. (2007). Use of Near-Infrared Spectroscopy and Feature Selection Techniques for Predicting the Caffeine Content and Roasting Color in Roasted Coffees. Journal of Agricultural and Food Chemistry, 55(18), 7477–7488. https://doi.org/10.1021/jf071139x
  22. Reeves, J. B., & Van Kessel, J. S. (2000). Near-Infrared Spectroscopic Determination of Carbon, Total Nitrogen, and Ammonium-N in Dairy Manures1. Journal of Dairy Science, 83(8), 1829–1836. https://doi.org/10.3168/jds.S0022-0302(00)75053-3
  23. Rovalo, M., & Rojas, M. (1982). Fisiología vegetal experimental; prácticas de laboratorio. Editorial Limusa.
  24. Sunarharum, W. B., Williams, D. J., & Smyth, H. E. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62, 315–325. https://doi.org/10.1016/j.foodres.2014.02.030
  25. Vásquez, D. R., Abadía, B., & Arreaza, L. C. (2004). Aplicación de la Espectroscopía de Reflectancia en el Infrarrojo Cercano (NIRS) para la caracterización nutricional del pasto Guinea y del grano de maíz. Ciencia & Tecnología Agropecuaria, 5(1), 49–55. https://doi.org/10.21930/rcta.vol5_num1_art:24
  26. Villarreal, D., Baena, L. M., & Posada, H. E. (2012). Análisis de lípidos y ácidos grasos en café verde de líneas avanzadas de Coffea arabica cultivadas en Colombia. Revista Cenicafé, 63(1), 19–40. http://hdl.handle.net/10778/520
  27. Villegas, A. M., Pérez, C., Arana, V. A., Sandoval, T., Posada, H. E., Garrido, A., Guerrero, J., Pérez, D., & García, J. (2014). Identificación de origen y calibración para tres compuestos químicos en café por espectroscopia de infrarojo cercano. Revista Cenicafé, 65(1), 7–16. http://hdl.handle.net/10778/551
  28. Weyer, L. G. (1985). Near-Infrared Spectroscopy of Organic Substances. Applied Spectroscopy Reviews, 21(1-2), 1–43. https://doi.org/10.1080/05704928508060427