Skip to main navigation menu Skip to main content Skip to site footer

Canopy structure and light distribution of two coffee progenies with different leaf angles Estructura y distribución lumínica en el dosel de dos progenies de café con ángulos foliares diferentes

How to Cite
Unigarro, C. A., Trejos Pinzón, J. F., & Acuña Zornosa, J. R. (2021). Canopy structure and light distribution of two coffee progenies with different leaf angles. Cenicafe Journal, 72(1), e72104. https://doi.org/10.38141/10778/72104




Keywords
Coffea arabica L.

hojas

ramas

tamaño

coeficiente de extinción

Coffea arabica L.

leaves

branches

size

extinction coefficient

Coffea arabica L.

folhas

galhos

tamanho

coeficiente de extinção

Sectión
Articles
Carlos Andrés Unigarro
Jhon Félix Trejos Pinzón
José Ricardo Acuña Zornosa

Summary

There are few studies about perennial crops, including coffee, that relate leaf inclination angle to canopy structure and light distribution. In this study, the differences between structure and theoretical light distribution in the canopy of two coffee progenies with different leaf angles were determined. At the Cenicafe's Naranjal Experiment Station of (Caldas, Colombia), four-year old Coffea arabica L. plants at a planting density of 6,668 plants/ha of the progenies CU1911 (vertically inclined leaves) and CX2391 (horizontally inclined leaves) were evaluated. Seven structural variables associated with foliage and seven associated with stem were measured; nine out of these 14 variables were measured in three profiles of the tree. The Ellipsoidal and Beta functions parameters, extinction coefficient, radiation interception fraction and illuminated leaf area index were mathematically estimated. The comparisons were made with the t-test or Mann-Whitney U test (? = 0.05) between genotypes and with the Duncan test (? = 0.05) between profiles. Characteristics such as leaf size, number of leaves and, to a lesser extent, plant height, show changes that could prove association with light distribution (extinction coefficient) within canopy as well as with leaf angle. The radiation interception fraction and the illuminated leaf area index suggest different theoretical photosynthetic performances. Branch growth was not associated with the light gradient.

Carlos Andrés Unigarro, Centro Nacional de Investigaciones de Café

Investigador Científico I. Disciplina de Fisiología Vegetal, Centro Nacional de Investigaciones de Café, Cenicafé.


Jhon Félix Trejos Pinzón, Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Experimentación, Cenicafé.


José Ricardo Acuña Zornosa, Centro Nacional de Investigaciones de Café

Investigador Científico III. Disciplina de Fisiología Vegetal, Cenicafé.


References (See)

  1. Alvarado, G., & Ochoa, H. E. (2006). Características fenotípicas de componentes de variedad Castillo® en dos ambientes. Revista Cenicafé, 57(2), 100–121. http://hdl.handle.net/10778/120
  2. Anten, N. P. R. (2016). Optimization and Game Theory in Canopy Models. En K. Hikosaka, Ü. Niinemets, & N. P. R. Anten (Eds.), Canopy Photosynthesis: From Basics to Applications (Vol. 42, pp. 355–377). Springer Netherlands. https://doi.org/10.1007/978-94-017-7291-4_13
  3. Araujo, W. L., Dias, P. C., Moraes, G. A. B. K., Celin, E. F., Cunha, R. L., Barros, R. S., & DaMatta, F. M. (2008). Limitations to photosynthesis in coffee leaves from different canopy positions. Plant Physiology and Biochemistry, 46(10), 884–890. https://doi.org/10.1016/j.plaphy.2008.05.005
  4. Bai, Z., Mao, S., Han, Y., Feng, L., Wang, G., Yang, B., Zhi, X., Fan, Z., Lei, Y., Du, W., & Li, Y. (2016). Study on Light Interception and Biomass Production of Different Cotton Cultivars. PLOS ONE, 11(5), e0156335. https://doi.org/10.1371/journal.pone.0156335
  5. Bote, A. D., Ayalew, B., Ocho, F. L., Anten, N. P. R., & Vos, J. (2018). Analysis of coffee (Coffea arabica L.) performance in relation to radiation levels and rates of nitrogen supply I. Vegetative growth, production and distribution of biomass and radiation use efficiency. European Journal of Agronomy, 92, 115–122. https://doi.org/10.1016/j.eja.2017.10.007
  6. Campbell, G. S. (1990). Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agricultural and Forest Meteorology, 49(3), 173–176. https://doi.org/10.1016/0168-1923(90)90030-A
  7. Campbell, G. S., & Norman, J. M. (1989). The description and measurement of plant canopy structure. En G. Russell, B. Marshall, & P. G. Jarvis (Eds.), Plant canopies: Their growth, form and function (pp. 1–20). Cambridge University Press. https://doi.org/10.1017/CBO9780511752308.002
  8. Campbell, G. S., & Norman, J. (1998). An Introduction to Environmental Biophysics (2nd ed.). Springer-Verlag. https://doi.org/10.1007/978-1-4612-1626-1
  9. Castillo, E., Arcila, J., Jaramillo, A., & Sanabria, J. (1996). Estructura del dosel e interceptación de la radiación solar en café Coffea arabica L., var. Colombia. Revista Cenicafé, 47(1), 5–15. https://www.cenicafe.org/es/publications/arc047%2801%29005-015.pdf
  10. Castillo, E., Arcila, J., Jaramillo, A., & Sanabria, J. (1997). Interceptación de la radiación fotosintéticamente activa y su relación con el área foliar de Coffea arabica L. Revista Cenicafé, 48(3), 182–194. https://www.cenicafe.org/es/publications/arc048%2803%29182-194.pdf
  11. Chaves, A. R. M., Ten-Caten, A., Pinheiro, H. A., Ribeiro, A., & DaMatta, F. M. (2008). Seasonal changes in photoprotective mechanisms of leaves from shaded and unshaded field-grown coffee (Coffea arabica L.) trees. Trees, 22(3), 351–361. https://doi.org/10.1007/s00468-007-0190-7
  12. Falster, D. S., & Westoby, M. (2003). Leaf size and angle vary widely across species: What consequences for light interception? New Phytologist, 158(3), 509–525. https://doi.org/10.1046/j.1469-8137.2003.00765.x
  13. Goel, N. S., & Strebel, D. E. (1984). Simple Beta Distribution Representation of Leaf Orientation in Vegetation Canopies. Agronomy Journal, 76(5), 800–802. https://doi.org/10.2134/agronj1984.00021962007600050021x
  14. Herbert, T. J., & Nilson, T. (1991). A model of variance of photosynthesis between leaves and maximization of whole plant photosynthesis. Photosynthetica, 25(1), 597–606.
  15. Hikosaka, K., & Hirose, T. (1997). Leaf angle as a strategy for light competition: Optimal and evolutionarily stable light-extinction coefficient within a leaf canopy. Écoscience, 4(4), 501–507. https://doi.org/10.1080/11956860.1997.11682429
  16. Hirose, T. (2005). Development of the Monsi–Saeki theory on canopy structure and function. Annals of Botany, 95(3), 483–494. https://doi.org/10.1093/aob/mci047
  17. Jaramillo, A., & Santos, J. M. (1980). Balance de radiación solar en Coffea arabica L., variedades Catuaí y Bourbon amarillo. Revista Cenicafé, 31(3), 86–104. https://www.cenicafe.org/es/publications/arc031%2803%29086-104.pdf
  18. King, D. A. (1997). The Functional significance of leaf angle in Eucalyptus. Australian Journal of Botany, 45(4), 619–639. https://doi.org/10.1071/BT96063
  19. Mansfield, B. D., & Mumm, R. H. (2014). Survey of Plant Density Tolerance in U.S. Maize Germplasm. Crop Science, 54(1), 157–173. https://doi.org/10.2135/cropsci2013.04.0252
  20. Matos, F. S., Wolfgramm, R., Gonçalves, F. V., Cavatte, P. C., Ventrella, M. C., & DaMatta, F. M. (2009). Phenotypic plasticity in response to light in the coffee tree. Environmental and Experimental Botany, 67(2), 421–427. https://doi.org/10.1016/j.envexpbot.2009.06.018
  21. McFadyen, L. M., Morris, S. G., Oldham, M. A., Huett, D. O., Meyers, N. M., Wood, J., & McConchie, C. A. (2004). The relationship between orchard crowding, light interception, and productivity in macadamia. Australian Journal of Agricultural Research, 55(10), 1029–1038. https://doi.org/10.1071/AR04069
  22. Mejía, J. W., Cartagena, J. R., & Riaño, N. M. (2013). Morphometric and Productive Characterization of Nineteen Genotypes from the Colombian Coffea Collection. Revista Facultad Nacional de Agronomía Medellín, 66(2), 7021–7034. https://revistas.unal.edu.co/index.php/refame/article/view/41144
  23. Monsi, M., & Saeki, T. (2005). On the Factor Light in Plant Communities and its Importance for Matter Production. Annals of Botany, 95(3), 549–567. https://doi.org/10.1093/aob/mci052
  24. Niinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), 693–714. https://doi.org/10.1007/s11284-010-0712-4
  25. Niinemets, Ü. (2016). Within-Canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. En K. Hikosaka, Ü. Niinemets, & N. P. R. Anten (Eds.), Canopy Photosynthesis: From Basics to Applications (Vol. 42, pp. 101–141). Springer Netherlands. https://doi.org/10.1007/978-94-017-7291-4_4
  26. Nilson, T. (1971). A theoretical analysis of the frequency of gaps in plant stands. Agricultural Meteorology, 8, 25–38. https://doi.org/10.1016/0002-1571(71)90092-6
  27. Norman, J. M., & Campbell, G. S. (1989). Canopy structure. En R. W. Pearcy, J. R. Ehleringer, H. A. Mooney, & P. W. Rundel (Eds.), Plant Physiological Ecology: Field methods and instrumentation (pp. 301–325). Springer Netherlands. https://doi.org/10.1007/978-94-009-2221-1_14
  28. Palmer, J. W., Avery, D. J., & Wertheim, S. J. (1992). Effect of apple tree spacing and summer pruning on leaf area distribution and light interception. Scientia Horticulturae, 52(4), 303–312. https://doi.org/10.1016/0304-4238(92)90031-7
  29. Pompelli, M. F., Pompelli, G. M., Cabrini, E. C., Alves, M. C., & Ventrella, M. C. (2012). Leaf anatomy, ultrastructure and plasticity of Coffea arabica L. in response to light and nitrogen availability. Biotemas, 25(4), 13–28. https://doi.org/10.5007/2175-7925.2012v25n4p13
  30. Rodrigues, W., Tomaz, M. A., Amaral, J. F., Ferrao, M. A., Colodetti, T. V., Apostólico, M. A., & Christo, L. F. (2014) Biometrical studies on characteristics of plagiotropic branches in Coffea arabica L. cultivated with high plant density. Australian Journal of Crop Science, 8(8), 1239–1247. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123884
  31. Rom, C. R. (1991). Light thresholds for apple tree canopy growth and development. HortScience, 26(8), 989–992. https://doi.org/10.21273/HORTSCI.26.8.989
  32. Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124–141. https://doi.org/10.1016/j.compag.2011.09.007
  33. Ross, J. (1981). The radiation regime and architecture of plant stands (Vol. 3). Springer Netherlands. https://doi.org/10.1007/978-94-009-8647-3
  34. Song, Q., Zhang, G., & Zhu, X.-G. (2013). Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 40(2), 109–124. https://doi.org/10.1071/FP12056
  35. Tang, L., Yin, D., Chen, C., Yu, D., & Han, W. (2019). Optimal Design of Plant Canopy Based on Light Interception: A Case Study With Loquat. Frontiers in Plant Science, 10, 364. https://doi.org/10.3389/fpls.2019.00364
  36. Truong, S. K., McCormick, R. F., Rooney, W. L., & Mullet, J. E. (2015). Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor. Genetics, 201(3), 1229–1238. https://doi.org/10.1534/genetics.115.178608
  37. Unigarro, C. A., Hernández, J. D., Montoya, E. C., Medina, R. D., Ibarra, L. N., Carmona, C. Y., & Flórez, C. P. (2015). Estimation of leaf area in coffee leaves (Coffea arabica L.) of the Castillo® variety. Bragantia, 74(4), 412–416. https://doi.org/10.1590/1678-4499.0026
  38. Unigarro, C. A., Jaramillo, A., & Flórez, C. P. (2017). Evaluation of six leaf angle distribution functions in the Castillo® coffee variety. Agronomía Colombiana, 35(1), 23–28. https://doi.org/10.15446/agron.colomb.v35n1.60063
  39. Unigarro, C. A., Jaramillo, A., Ibarra, L. N., & Flórez, C. P. (2016). Estructura del dosel y coeficientes de extinción teóricos en genotipos de café arábico en Colombia. Acta Agronómica, 65(4), 383–389. https://doi.org/10.15446/acag.v65n4.51899
  40. Valladares, F. (1999). Architecture, ecology and evolution of plant crowns. En F. I. Pugnaire & F. Valladares (Eds.), Handbook of functional plant ecology (pp. 121–194). Marcel Dekker.
  41. van Zanten, M., Pons, T. L., Janssen, J. A. M., Voesenek, L. A. C. J., & Peeters, A. J. M. (2010). On the relevance and control of leaf angle. Critical Reviews in Plant Science, 29(5), 300–316. https://doi.org/10.1080/07352689.2010.502086
  42. Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1-2), 106–122. https://doi.org/10.1016/j.agrformet.2006.12.003
  43. Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., & Zhang, W. (2019). Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 265, 390–411. https://doi.org/10.1016/j.agrformet.2018.11.033
  44. Zhang, W., Tang, L., Yang, X., Liu, L., Cao, W., & Zhu, Y. (2015). A simulation model for predicting canopy structure and light distribution in wheat. European Journal of Agronomy, 67, 1–11. https://doi.org/10.1016/j.eja.2015.02.010

Most read articles by the same author(s)