Skip to main navigation menu Skip to main content Skip to site footer

Effect of storage on the viability, germination and vigor of seeds of Coffea arabica l. Efecto del almacenamiento en la viabilidad, germinación y vigor de semillas de Coffea arabica L.

How to Cite
Flechas-Bejarano, N., & Medina-Rivera, R. (2021). Effect of storage on the viability, germination and vigor of seeds of Coffea arabica l. Cenicafe Journal, 72(2), e72206. https://doi.org/10.38141/10778/72206




Keywords
Tetrazolio

incubación

humedad relativa

temperatura

plántulas

almacenamiento

semilla

café

Tetrazolium

incubation

relative humidity

temperature

seedlings

storage

seed

coffee

Tetrazólio

Tetrazólio

incubação

umidade relativa do ar

temperatura

armazenamento

semente

café

Sectión
Articles

Summary

Storing coffee seeds under ideal conditions of temperature and relative humidity maintains the physiological quality for their propagation over extended periods of time. The objective of this research was to evaluate the effect of three environments with contrasting temperature and relative humidity on the viability of the seed, during 14 storage months, by means of: the topographic test with tetrazolium chloride; germination by the emergence of the radicle in plastic boxes and by counting the seedlings in a sand germinator; and vigor by morphometric measurements in seedlings of Coffea arabica L . var Castillo®. For the viability of the seed, the categories of absolute staining (A) and nostaining (E) were different regardless of the environments and the storage effect. The emergence of the radicle and germination indicated that the environmental condition 10 ± 2 ° C; 65 ± 7% RH favors greater proliferation of seeds with emerging radicles and seedlings (> 75%) in the 400 and 320 days, respectively. Regarding the measurement of the morphometric variables, only the length of the hypocotyl and the taproot showed a descriptive trend by treatment and storage month. The environmental condition 10 ± 2 ° C; 65 ± 7% RH preserved the physiological quality of the seeds for propagation for four months.

Natalia Flechas-Bejarano, Cenicafé

Asistente de Investigación. Disciplina de Fisiología Vegetal, Centro Nacional de Investigaciones de Café, Cenicafé.


Rubén Medina-Rivera, Cenicafé

Investigador Científico II. Disciplina de Biometría, Centro Nacional de Investigaciones de Café, Cenicafé.


References (See)

  1. Beedi, S., Macha, S. I., Gowda, B., Savitha, A. S., & Kurnallikar, V. (2018). Effect of seed priming on germination percentage, shoot length, root length, seedling vigour index, moisture content and electrical conductivity in storage of kabuli chickpea cv., MNK–1 (Cicer arietinum L.). Journal of Pharmacognosy and Phytochemistry, 7(1), 2005-2010.
  2. Busso, C., Torres, Y., Ithurrart, L., & Richards, J. H. (2015). The TTC-technique might not appropriately test the physiological stage of plant tissues. Russian Journal of Plant Physiology, 62(4), 551–556. https://doi.org/10.1134/S1021443715040068
  3. Castro, A. M., Rivillas, C. A., Serna-Giraldo, C., & Mejía, C. G. (2008). Germinadores de café: construcción, manejo de Rhizoctonia solani y costos. Avances Técnicos Cenicafé, 368, 1–12. http://hdl.handle.net/10778/4176
  4. Cheyed, S. H. (2019). Field emergence and seedling vigour of bread wheat as influenced by method and longevity of storage. Iraqi Journal of Agricultural Sciences, 50(6). 1495–1500 https://doi.org/10.36103/ijas.v50i6.837
  5. da Rosa, S. D. V. F., Carvalho, A. M., McDonald, M. B., von Pinho, E. R. V., Silva, A., P., & Veiga, A. D. (2011). The effect of storage conditions on coffee seed and seedling quality. Seed Science and Technology, 39(1), 151–164. https://doi.org/10.15258/sst.2011.39.1.13
  6. Dussert, S., Serret, J., Bastos-Siqueira, A., Morcillo, F., Déchamp, E., Rofidal, V., Lashermes, P., Etienne, H., & JOët, T. (2018). Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. Journal of Experimental Botany, 69(7), 1583–1597. https://doi.org/10.1093/jxb/erx492
  7. Dussert, S., Davey, M. W., Laffargue, A., Doulbeau, S., Swennen, R., & Etienne, H. (2006). Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds. Physiologia Plantarum, 127(2), 192–204. https://doi.org/10.1111/j.1399-3054.2006.00666.x
  8. Eira, M. T. S., da Silva, E. A, de Castro, R. D., Dussert, S., Walters, C., Bewley, D., & Hilhorst, H. W. M. (2006). Coffee seed physiology. Brazilian Journal of Plant Physiology, 18(1), 149–163. https://doi.org/10.1590/S1677-04202006000100011
  9. Ellis, R. H., Hong, T. D., & Roberts, E. H. (1990). An Intermediate Category of Seed Storage Behaviour?. Journal of Experimental Botany, 41(9), 1167–1174. https://doi.org/10.1093/jxb/41.9.1167
  10. Fantazzini, T. B., Franco da Rosa, S. D. V., Carvalho, G. R., Liska, G. R., de Carvalho, M. L. M., Coelho, S. V. B., Cirillo, M. Â., & Ribeiro, F. A. S. (2020). Correlation between historical data of the germination test and of the tetrazolium test in coffee seeds by GAMLSS. Seed Science and Technology, 48(2), 179–188. https://doi.org/10.15258/sst.2020.48.2.05
  11. Farias, E. T., da Silva, E. A. A., Toorop, P. E., Bewley, J. D., & Hilhorst, H. W. M. (2015). Expression studies in the embryo and in the micropylar endosperm of germinating coffee (Coffea arabica cv. Rubi) seeds. Plant Growth Regulation, 75(2), 575–581. https://doi.org/10.1007/s10725-014-9960-6
  12. Ferreira, V. F., Ricaldoni, M. A., Rosa, S. D. V. F. da, Figueiredo, M. A. de, Coelho, S. V. B., & Fantazzini, T. B. (2018). Endo-?-mannanase enzyme activity in the structures of Coffea arabica L. seeds under different types of processing and drying. Ciência Rural, 48(12). e20170839. https://doi.org/10.1590/0103-8478cr20170839
  13. Freitas, M. N., Rosa, S D., Clemente, A. C. S., & Pereira, C. C. (2017). Relevance of endo-ß-mannanase enzyme in coffee seed deterioration process. African Journal of Agricultural Research, 12(15), 1253–1258. https://doi.org/10.5897/AJAR2016.10949
  14. Guimarães, C. C., Franco da Rosa, S. D. V., de Carvalho, M. H., Malta, M. R., & Evangelista Oliveira, R. M. (2020). Total lipid and fatty acid profiles of Coffea arabica endosperm and embryo tissues and their relationship to seed desiccation sensitivity. Seed Science and Technology, 48(2), 209–219. https://doi.org/10.15258/sst.2020.48.2.08
  15. Huang, Y., Lan, Q. Y., Hua, Y., Luo, Y. L., & Wang, X. F. (2014). Desiccation and storage studies on three cultivars of Arabica coffee. Seed Science and Technology, 42(1), 60–67. https://doi.org/10.15258/sst.2014.42.1.06
  16. International Seed Testing Association. (2005). International rules for seed testing 2005. ISTA.
  17. Joët, T., Laffargue, A., Salmona, J., Doulbeau, S., Descroix, F., Bertrand, B., de Kochko, A., & Dussert, S. (2009). Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study. The New Phytologist, 182(1), 146–162. https://doi.org/10.1111/j.1469-8137.2008.02742.x
  18. Mahender, A., Anandan, A., & Pradhan, S. K. (2015). Early seedling vigour, an imperative trait for direct-seeded rice: An overview on physio-morphological parameters and molecular markers. Planta, 241(5), 1027–1050. https://doi.org/10.1007/s00425-015-2273-9
  19. Marques, A., Buijs, G., Ligterink, W., & Hilhorst, H. (2018). Evolutionary ecophysiology of seed desiccation sensitivity. Functional Plant Biology, 45(11), 1083–1095. https://doi.org/10.1071/FP18022
  20. Nasiro, K. (2017). The Interaction Effects of Storage Condition, Storage Time and Initial Seed Moisture Content on Seedling Growth Performances of Coffee (Coffea arabica L.). Food Science and Quality Management, 70(1), 1–8. https://www.iiste.org/Journals/index.php/FSQM/article/view/40238
  21. Nasiro, K., Shimber, T., & Mohammed, A. (2017). Germination and seedling growth rate of coffee (Coffea arabica L.) seeds as influenced by initial seed moisture content, storage time and storage condition. International Journal of Agriculture and Biosciences, 6(6), 304–310. https://www.cabdirect.org/cabdirect/abstract/20183083796
  22. Rasband, W. (2018). ImageJ [Java plugins]. National Institute of Mental Health. https://imagej.nih.gov/ij/docs/intro.html
  23. RStudio Team (2020). RStudio: Integrated Development for R.Studio. http://www.rstudio.com/
  24. Selmar, D., Bytof, G., & Knopp, S. E. (2008). The Storage of Green Coffee (Coffea arabica): Decrease of Viability and Changes of Potential Aroma Precursors. Annals of Botany, 101(1), 31–38. https://doi.org/10.1093/aob/mcm277
  25. Shimizu, M. M., & Mazzafera, P. (2000). A Role for Trigonelline During Imbibition and Germination of Coffee Seeds. Plant Biology, 2(6), 605–611. https://doi.org/10.1055/s-2000-16645
  26. Shu, K., Liu, X., Xie, Q., & He, Z. (2016). Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 9(1), 34–45. https://doi.org/10.1016/j.molp.2015.08.010
  27. Steinbrecher, T., & Leubner-Metzger, G. (2017). The biomechanics of seed germination. Journal of Experimental Botany, 68(4), 765–783. https://doi.org/10.1093/jxb/erw428
  28. Trujillo, H. A., Gomes-Junior, F. G., & Cicero, S. M. (2019). Digital images of seedling for evaluating coffee seed vigor. Journal of Seed Science, 41(1), 60–68. https://doi.org/10.1590/2317-1545v41n1204651
  29. Walters, C. (2015). Orthodoxy, recalcitrance and in-between: Describing variation in seed storage characteristics using threshold responses to water loss. Planta, 242(2), 397–406. https://doi.org/10.1007/s00425-015-2312-6
  30. Wojtyla, ?., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Different Modes of Hydrogen Peroxide Action During Seed Germination. Frontiers in Plant Science, 7(1), 66. https://doi.org/10.3389/fpls.2016.00066