Leaf hydraulic conductance in accessions from the core collection and Progenies of the variety Cenicafé 1
Conductancia hidráulica foliar en accesiones de la colección núcleo de Coffea sp. y progenies de la variedad Cenicafé 1.
How to Cite
Acuña-Zornosa, J. R., Camilo-Reyes, C. D., Unigarro, C. A., & Flechas-Bejarano, N. (2023). Leaf hydraulic conductance in accessions from the core collection and Progenies of the variety Cenicafé 1. Cenicafe Journal, 74(2), e74203. https://doi.org/10.38141/10778/74203
Studies involving Coffea arabica, grown under varying shade levels and sun exposure, have consistently highlighted leaf hydraulic conductance (KF) as a crucial obstacle to maximizing gas exchange and photosynthetic rate. Extensive research in plant evolution has substantiated the positive relationship between leaf hydraulic conductivity and photosynthesis. The core collection of Coffea sp. germplasm, curated by Cenicafé, effectively encapsulates the genetic and phenotypic diversity within the Colombian coffee collection. Yet, the variations in leaf hydraulic conductance among the accessions within this core collection remain unexplored. Consequently, leveraging this genetic resource for the purpose of breeding coffee progenies with enhanced conductance traits has remained a challenge. In this project, the leaf conductance of 42 accessions from the core collection of Coffea sp. and eight progenies derived from the Cenicafé 1 variety was qualified utilizing the evaporative flow method. The KF values reported in this research yield statistically significant findings, revealing distinct groupings among the accessions. Notably, accessions CCC16, CCC50, CCC82, CCC176, CCC427, CCC1011, CCC1045 and CCC1131 exhibited remarkably high leaf conductance. The KF of the 8 lines of the Cenicafé 1 variety showcased a range of leaf conductance levels, spanning from very high (25%), to high (37.5%) and moderate (37.5%). Importantly, none of the progeny from the Cenicafé 1 variety fell within the low conductance category, underscoring the significance of these findings for enhancing the photosynthetic performance of this coffee variety.
Author biography (See)
José Ricardo Acuña-Zornosa, Centro Nacional de Investigaciones de Café
Investigador Científico III, Disciplina de Fisiología, Cenicafé
Cristian David Camilo-Reyes, Centro Nacional de Investigaciones de Café
Investigador Científico I hasta 31 mayo de 2022. Disciplina de Fisiología Vegetal, Cenicafé
Carlos Andres Unigarro, Centro Nacional de Investigaciones de Café
Investigador Científico II, Disciplina de Fisiología Vegetal, Cenicafé
Natalia Flechas-Bejarano, Centro Nacional de Investigaciones de Café
Asistente de Investigación, Disciplina de Fisiología Vegetal, Cenicafé
References (See)
Brodribb, T. J., Holbrook, N. M., Zwieniecki, M. A., & Palma, B. (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima. New Phytologist, 165(3), 839–846. https://doi.org/10.1111/j.1469-8137.2004.01259.x
Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144(4), 1890–1898. https://doi.org/10.1104/pp.107.101352
Brodribb, T. J., & Buckley, T. N. (2018). Leaf Water Transport: A Core System in the Evolution and Physiology of Photosynthesis. En W. W. Adams III & I. Terashima (Eds.), The Leaf: A Platform for Performing Photosynthesis (pp. 81–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-93594-2_4
Ceulemans, R., & Saugier, B. (1991). Photosynthesis. En A. S. Raghavendra (Ed.), Physiology of trees (pp. 21–50). Wiley.
Meyer, F. G., Fernie, L. M., Narasimhaswamy, R. L., Monaco, L. C., & Greathead, D. J. (1968). FAO Coffee Mission to Ethiopia 1964-1965. FAO.
Franck, N., Vaast, P., Genard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517–525. https://doi.org/10.1093/treephys/26.4.517
Gascó, A., Nardini, A., & Salleo, S. (2004). Resistance to water flow through leaves of Coffea arabica is dominated by extra-vascular tissues. Functional Plant Biology, 31(12), 1161. https://doi.org/10.1071/FP04032
Guillaumet, J. L., & Hallé, F. (1978). Echantillonnage du matériel Coffea arabica récolté en Ethiopie. En A. Charrier (Ed.), Etude de la structure et de la variabilité génétique des caféiers: Résultats des études et des expérimentations réalisées au Cameroun, en Cote d’Ivoire et à Madagascar sur l’espèce Coffea arabica L. collectée en Ethiopie par une mission ORSTOM en 1966- Bulletin IFCC 14 (pp. 13–18). IFCC.
Kumar, D., & Tieszen, L. L. (1980). Photosynthesis in Coffea arabica. I. Effects of Light and Temperature. Experimental Agriculture, 16(1), 13–19. https://doi.org/10.1017/S0014479700010656
Lovisolo, C., & Tramontini, S. (2010). Methods for Assessment of Hydraulic Conductance and Embolism Extent in Grapevine Organs. En S. Delrot, H. Medrano, E. Or, L. Bavaresco, & S. Grando (Eds.), Methodologies and Results in Grapevine Research (pp. 71–85). Springer Netherlands. https://doi.org/10.1007/978-90-481-9283-0_6
Machado, J. A., Rodrigues, W. P., Baroni, D. F., Pireda, S., Campbell, G., de Souza, G. A. R., Verdin Filho, A. C., Arantes, S. D., de Oliveira Arantes, L., da Cunha, M., Gambetta, G. A., Rakocevic, M., Ramalho, J. C., & Campostrini, E. (2021). Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. Journal of Plant Physiology, 258–259, 153355. https://doi.org/10.1016/j.jplph.2020.153355
Martins, S. C. V., Galmés, J., Cavatte, P. C., Pereira, L. F., Ventrella, M. C., & DaMatta, F. M. (2014). Understanding the Low Photosynthetic Rates of Sun and Shade Coffee Leaves: Bridging the Gap on the Relative Roles of Hydraulic, Diffusive and Biochemical Constraints to Photosynthesis. PLOS ONE, 9(4), e95571. https://doi.org/10.1371/journal.pone.0095571
Martins, S. C. V., Sanglard, M. L., Morais, L. E., Menezes-Silva, P. E., Mauri, R., Avila, R. T., Vital, C. E., Cardoso, A. A., & DaMatta, F. M. (2019). How do coffee trees deal with severe natural droughts? An analysis of hydraulic, diffusive and biochemical components at the leaf level. Trees, 33(6), 1679–1693. https://doi.org/10.1007/s00468-019-01889-4
Mauri, R., Cardoso, A. A., da Silva, M. M., Oliveira, L. A., Avila, R. T., Martins, S. C. V., & DaMatta, F. M. (2020). Leaf hydraulic properties are decoupled from leaf area across coffee species. Trees, 34(6), 1507–1514. https://doi.org/10.1007/s00468-020-01983-y
Mosquera, L.P., Riaño, N. M., Arcila, J., & Ponce, C. A. (1999). Fotosíntesis, respiración y fotorrespiración en hojas de cafe Coffea sp. Revista Cenicafé, 50(3), 215–221.
Nardini, A., Õunapuu-Pikas, E., Savi, T., Nardini, A., Õunapuu-Pikas, E., & Savi, T. (2014). When smaller is better: Leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes. Functional Plant Biology, 41(9), 972–982. https://doi.org/10.1071/FP13302
R Software Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing (3.6.1.) [Computer software]. https://www.r-project.org
Sack, L., & Scoffoni, C. (2012). Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM). Journal of Visualized Experiments, 70, 4179. https://doi.org/10.3791/4179
Sack, L., Ball, M. C., Brodersen, C., Davis, S. D., Des Marais, D. L., Donovan, L. A., Givnish, T. J., Hacke, U. G., Huxman, T., Jansen, S., Jacobsen, A. L., Johnson, D. M., Koch, G. W., Maurel, C., McCulloh, K. A., McDowell, N. G., McElrone, A., Meinzer, F. C., Melcher, P. J., … Holbrook, N. M. (2016). Plant hydraulics as a central hub integrating plant and ecosystem function: Meeting report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington, DC, May 2015). Plant, Cell & Environment, 39(9), 2085–2094. https://doi.org/10.1111/pce.12732
Scoffoni, C., Chatelet, D. S., Pasquet-kok, J., Rawls, M., Donoghue, M. J., Edwards, E. J., & Sack, L. (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2(6), 1–8. https://doi.org/10.1038/nplants.2016.72
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Silva, E. A., DaMatta, F. M., Ducatti, C., Regazzi, A. J., & Barros, R. S. (2004). Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Research, 89(2), 349–357. https://doi.org/10.1016/j.fcr.2004.02.010
Tatagiba, S. D., Pezzopane, J. E. M., Reis, E. F. (2010). Crescimento vegetativo de mudas de café arábica (Coffea arabica L.) submetidas a diferentes níveis de sombreamento. Coffee Science, 5(3), 251–261. http://www.sbicafe.ufv.br:80/handle/123456789/5413
Wang, X., Zhao, J., Huang, J., Peng, S., & Xiong, D. (2022). Evaporative flux method of leaf hydraulic conductance estimation: Sources of uncertainty and reporting format recommendation. Plant Methods, 18(1), 63. https://doi.org/10.1186/s13007-022-00888-w
Wu, T., Tissue, D. T., Li, X., Liu, S., Chu, G., Zhou, G., Li, Y., Zheng, M., Meng, Z., & Liu, J. (2020). Long?term effects of 7?year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. Global Change Biology, 26(12), 7144–7157. https://doi.org/10.1111/gcb.15355
Xiong, D., & Nadal, M. (2020). Linking water relations and hydraulics with photosynthesis. The Plant Journal, 101(4), 800–815. https://doi.org/10.1111/tpj.14595
Zapata, P. C., Andrade, H. J., & Nieto Abril, Z. K. (2017). Comportamiento ecofisiológico del cafeto (Coffea arabica L.) cv. Castillo en sistemas agroforestales de Tibacuy, Cundinamarca. Revista U.D.C.A Actualidad & Divulgación Científica, 20(1), 61–70. https://doi.org/10.31910/rudca.v20.n1.2017.63