Land covers map using Sentinel-2 and Landsat-8 satellite images of the municipality of Covarachía - Colombia

Authors

  • Jose Leon Leon Universidad Distrital Francisco José de Caldas , Universidad Distrital Francisco José de Caldas
    • Ruben Javier Medina Universidad Distrital Francisco José de Caldas , Universidad Distrital Francisco José de Caldas
      • Diana Marcela Ovalle Universidad Distrital Francisco José de Caldas , Universidad Distrital Francisco José de Caldas

        DOI:

        https://doi.org/10.52143/2346139X.930

        Keywords:

        unsupervised classifiers, ground cover, satellite images

        Abstract

        Agriculture is one of the fields in which the use
        of soils is of importance, since having adequate
        information makes it possible to demonstrate
        the management of agroecosystems that is of
        importance in mitigating climatic and environmental
        impacts (Rega et al., 2020). Given the
        different applications that need updated information
        on land cover, it is difficult to have solutions
        to all the needs due to the great variety of
        users (Szantoi et al., 2020). In this article, Sentinel-
        2 and Landsat-8 satellite images are used to
        which supervised and unsupervised classifying
        algorithms are applied to generate a map of the
        land cover of the municipality of Covarachía
        Colombia.

        Downloads

        Download data is not yet available.

        References

        Abbas, A., Minallh, N., Ahmad, N., Rehman, S., y Khan, M. (2016). K-Means and ISODATA Clustering Algorithms for Landcover Classification Using Remote Sensing. ResearchGate, 48, 315-318. https://www.researchgate.net/publication/303971825_K-Means_and_ISODATA_Clustering_Algorithms_for_Landcover_Classification_Using_Remote_Sensing

        Fisterra. (2020). Medidas de concordancia: El índice Kappa. https://www.fisterra.com/formacion/metodologia-investigacion/medidas-concordancia-indice-kappa/

        García, D., Camacho, M., y Paegelow, M. (2019). Sensitivity of a common Land Use Cover Change (LUCC) model to the Minimum Mapping Unit (MMU) and Minimum Mapping Width (MMW) of input maps. Computers, Environment and Urban Systems, 78, 101389. https://doi.org/10.1016/j.compenvurbsys.2019.101389

        Gisadminbeers. (26 de marzo de 2017). Combinaciones RGB de imágenes satélite Landsat y Sentinel. Gis&Beers. http://www.gisandbeers.com/combinacion-de-imagenes-satelite-landsat-sentinel-rgb/

        He, Y., Lee, E., y Warner, T. A. (2017). A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sensing of Environment, 199, 201-217. https://doi.org/10.1016/j.rse.2017.07.010

        Kiswanto, Tsuyuki, S., Mardiany, y Sumaryono. (2018). Completing yearly land cover maps for accurately describing annual changes of tropical landscapes. Global Ecology and Conservation, 13. https://doi.org/10.1016/j.gecco.2018.e00384

        NV5 Geospatial. (2020). K-Means. https://www.harrisgeospatial.com/docs/KMeansClassification.html

        Li, X., Ling, F., Foody, G., Ge, Y., Zhang, Y., y Du, Y. (2017). Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sensing of Environment, 196, 293-311. https://doi.org/10.1016/j.rse.2017.05.011

        Misra, M., Kumar, D., y Shekhar, S. (2020). Assessing Machine Learning Based Supervised Classifiers For Built-Up Impervious Surface Area Extraction From Sentinel-2 Images. Urban Forestry & Urban Greening, 53. https://doi.org/10.1016/j.ufug.2020.126714

        Nuestro municipio - Alcaldía Municipal de Covarachía en Boyacá. (2020). http://www.covarachia-boyaca.gov.co/municipio/nuestro-municipio

        Pérez, A., Udías, F., y Rembold, F. (2020). Integrating Multiple Land Cover Maps through a Multi-Criteria Analysis to Improve Agricultural Monitoring in Africa. International Journal of Applied Earth Observation and Geoinformation, 88. https://doi.org/10.1016/j.jag.2020.102064

        Rega, C., Short, C., Pérez, M., y Paracchini, M. (2020). A classification of European agricultural land using an energy-based intensity indicator and detailed crop description. Landscape and Urban Planning, 198. https://doi.org/10.1016/j.landurbplan.2020.103793

        Renza, D., Martinez, E., Molina, I., y Ballesteros, D. (2017). Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper. Advances in Space Research, 59(8), 2019-2031. https://doi.org/10.1016/j.asr.2017.01.027

        Saah, D., Tenneson, K., Poortinga, A., Nguyen, Q., Chishtie, F., … Ganz, D. (2020). Primitives as building blocks for constructing land cover maps. International Journal of Applied Earth Observation and Geoinformation, 85. https://doi.org/10.1016/j.jag.2019.101979

        Satélite Sentinel-2. Flota de satélites europeos de vigilancia medioambiental del programa Copernicus

        Satélite Landsat-8. Satélite estadounidense para estudios cartográficos y de características de temperatura de la superficie

        Stéphane, D., Laurence, D., Raffaele, G., Valérie, A., y Eloise, R. Land Cover Maps of Antananarivo (Capital of Madagascar) Produced by Processing Multisource Satellite Imagery and Geospatial Reference Data. Data in Brief, 31. https://doi.org/10.1016/j.dib.2020.105952

        Humboldt State University. (2019). Supervised Classification. http://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/Classification/supervised.html

        Szantoi, Z., Geller, G., Tsendbazar, N., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., y Obregón, A. (2020). Addressing the need for improved land cover map products for policy support. Environmental Science & Policy, 112, 28-35. https://doi.org/10.1016/j.envsci.2020.04.005

        Vilar, L., Garrido, J., Echavarría, P., Martínez, J., y Martín, M. (2019). Comparative analysis of CORINE and climate change initiative land cover maps in Europe: Implications for wildfire occurrence estimation at regional and local scales. International Journal of Applied Earth Observation and Geoinformation, 78, 102-117. https://doi.org/10.1016/j.jag.2019.01.019

        Downloads

        Published

        2021-12-12

        How to Cite

        Land covers map using Sentinel-2 and Landsat-8 satellite images of the municipality of Covarachía - Colombia. (2021). #ashtag, 2(19), 8-27. https://doi.org/10.52143/2346139X.930