Robótica asistencial y su interacción con entorno en oficinas

Authors

  • Mario Ricardo Arbulú , Corporación Unificada Nacional de Educación Superior

    DOI:

    https://doi.org/10.52143/2346139X.619

    Keywords:

    Artificial Vision, Assistive Robotics, Autonomous Navigation, D-H Parameters, Kinematics, Movement Planning, Service Robotics

    Abstract

     

     

     This paper describes the fundamentals of the autonomous navigation and manipulation algorithms used to give the cun Assistance Robot autonomy and that it can be used as an office assistant. The navigation algorithms are based on root locus techniques that, by selecting poles and zeros in the robot’s motion zone, generate an obstacle-free path, allowing the robot to move from one place to another. For object manipulation, arm movement algorithms are proposed, when the robot is close enough to the target with which it must work, based on the Denavit-Hartenberg parameters; howe­ver, these are modified towards the evaluation of the increased working space of the arms and the use of smooth Cartesian trajectories, the latter generated from the configuration of the object to be reached. Thanks to the presentation and discussion of the results, it is possible to conclude that the implementation of the assistance robot is viable and valid.

    Downloads

    Download data is not yet available.

    References

    Arbulú, M., Martínez, F. y Montiel, H. (2015). Metodología para el uso de la técnica de localización de raíces en la planeación de rutas para robots móviles. Tecnura, 19(46), 49-64. doi:https://doi.org/10.14483/udistrital.jour.tecnura.2015.4.a04

    Corke, P. (2007). A simple and systematic approach to assigning Denavit-Hartenberg parameters.ieee Transactions on Robotics, 23(3), 590-594. Recuperado de https://bit.ly/3hEMhxA

    Hayne, R., Luo, R. y Berenson, D. (2016). Considering avoidance and consistency in motion planning for human-robot manipulation in a shared workspace. ieee International Conference on Robotics and Automation (icra), 3948-3954. Recuperado de https://bit.ly/3wHT4Le

    Kemp, C., Edsinger, A. y Torres, E. (2007). Challenges for robot manipulation in human environments [Grand Challenges of Robotics]. ieee Robotics and Automation Magazine, 14(1), 20-29. Recuperado de https://ieeexplore.ieee.org/document/4141029

    Kruse, D., Radke, R., Wen, J. (2015). Collaborative human-robot manipulation of highly deformable materials. ieee International Conference on Robotics and Automation (icra), 3782-3787.Recuperado de https://bit.ly/3ep8ZI5

    Martínez, F., Orjuela, S. y Arbulú, M. (2017). Global navigation approach for assistant robot. Tecnura,21(51), 105-117. doi: https://doi.org/10.14483/udistrital.jour.tecnura.2017.1.a08

    Martinez, F., Rendón, A., y Arbulú, M. (2018). A data-driven path planner for small autonomous robots using deep regression models. En Y. Tan, Y. Shi y Q. Tang (eds.), Data Mining and Big Data. dmbd 2018. Lecture Notes in Computer Science, 10 943. Springer: Cham. Recuperado de https://bit.ly/3wCWBKQ

    Downloads

    Published

    2019-02-06

    How to Cite

    Robótica asistencial y su interacción con entorno en oficinas. (2019). #ashtag, 13, 43-54. https://doi.org/10.52143/2346139X.619