Skip to main navigation menu Skip to main content Skip to site footer

Study of the limiting factors for obtaining haploid plants from Coffea arabica Estudio de los factores limitantes para la obtención de plantas haploides de Coffea arabica

How to Cite
Suescún, L. B., Herrera Pinilla, J. C., & Acuña Zornosa, J. R. (2020). Study of the limiting factors for obtaining haploid plants from Coffea arabica. Cenicafe Journal, 71(1), 32-47. https://doi.org/10.38141/10778/1118




Keywords
Androgénesis

cultivo microsporas

haploides

Coffea arabica

Androgenesis

microspore culture

haploids

Coffea arabica

Sectión
Articles
Ligia Belén Suescún
Juan Carlos Herrera Pinilla
José Ricardo Acuña Zornosa

Summary

The development of an efficient method to obtain coffee haploid plants requires the study of the most limiting factors. This work of research evaluated the development of male gametes in relation to the phenological state of the C. arabica flower, flower disinfection treatments, treatments for isolation and purification of microspores. The thermal effect on the induction of androgenesis and the treatments with antimitotic agents for chromosomal duplication of haploid tissues were also evaluated. To induce the androgenesis process, flower buds between 1 and 1.7 cm in length were determined to contain the highest percentage of gametic cells in the late uninucleate and early binucleate states, crucial for ontogenetic change. It was  stablished that the lowest percentage of microbial contamination and biological oxidation was achieved with the use of calcium hypochlorite combined with antioxidants. The isolation and purification of the microspores was obtained by mechanical maceration of the anthers and filtration of the gametic cells in 40 and 70 micron-meshes together with the use of Percoll in gradients higher than 50%. The greatest androgenic induction of microspores was achieved by incubating the flower buds detached from the branch at 4°C, observing cell divisions and multicellular colonies formation. The application of Colchicine (1%) to meristems of haploid plants of C. arabica allowed to obtain branches with leaves that duplicated their chromosomal
material and changed their morphology

Ligia Belén Suescún

Ingeniera de Producción Biotecnología, M.Sc. Biología Aplicada


Juan Carlos Herrera Pinilla

Biólogo, M.Sc. Mejoramiento Genético de Plantas, Ph.D. Genómica y Mejoramiento Genético de Plantas. Nestlé, Francia.


José Ricardo Acuña Zornosa

Investigador Científico III. Disciplina de Fisiología Vegetal, Centro Nacional de Investigaciones de Café, Cenicafé. Chinchiná, Caldas, Colombia. https://orcid.org/0000-0001-6935-2264.


References (See)

  1. Berthou, F. (1975). Méthode d‘obtention de polyploïdes dans le genre Coffea par traitements localisés de bourgeons à la colchicine. Café, Cacao Thé(Francia). 19(3), 197-202.
  2. Caperta, A. D., Delgado, M., Ressurreição, F., Meister, A., Jones, R. N., Viegas, W., & Houben, A. (2006). Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells. Protoplasma, 227(2), 147-153. https://doi.org/10.1007/s00709-005-0137-z
  3. Cho, M. S., & Zapata, F. J. (1988). Callus formation and plant regeneration in isolated pollen culture of rice (Oryza sativa L. cv. Taipei 309). Plant Science, 58(2), 239-244. https://doi.org/10.1016/0168-9452(88)90014-3
  4. Davies, P. A., & Morton, S. (1998). A comparison of barley isolated microspore and anther culture and the influence of cell culture density. Plant Cell Reports, 17(3), 206- 210. https://doi.org/10.1007/s002990050379
  5. Gaillard, A., Vergne, P., & Beckert, M. (1991). Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Reports, 10(2), 55-58. https://doi.org/10.1007/BF00236456
  6. Gustafson, V. D., Baenziger, P. S., Wright, M. S., Stroup, W. W., & Yen, Y. (1995). Isolated wheat microspore culture. Plant Cell, Tissue and Organ Culture, 42(2), 207-213. https://doi.org/10.1007/BF00034239
  7. Herrera, J. C., Moreno, L. G., Acuña, J. R., De Peña, M., & Osorio, D. (2002). Colchicine-induced microspore embryogenesis in coffee. Plant Cell, Tissue and Organ Culture, 71(1), 89-92. https://doi.org/10.1023/A:1016564816602
  8. Herrera, J. C., & Camayo, G. C. (2008). Caracterización morfológica y citológica de árboles de Coffea arabica L., regenerados por cultivo in vitro de polen aislado. Revista Cenicafé, 59(2), 143-154. http://hdl.handle.net/10778/131
  9. Kasha, K., (2005). Chromosome doubling and recovery of doubled-haploid plants. En C. Palmer, W. Keller, & K. Kasha (Eds). Haploids in Crop Improvement II. Biotechnology in agriculture and forestry (Vol. 56, pp. 123-152). Springer. https://doi.org/10.1007/3-540-26889-8_7
  10. Mishra, M., Prakash, N., & Sreenivasan, M. (1991). Relationship of stomatal length and frequency to ploidy level in Coffea L. Journal of Coffee Research.21(1), 32-41.
  11. Neuenschwander, B., Dufour, M., Baumann, T. W. (1993, june 6-11). Haploid cell colony formation from mechanically isolated microspores of Coffea arabica [Conference session]. 15th International Scientific Colloquium on Coffee, Montpellier, France. https://www.asic-cafe.org/conference/15th-international-scientific-colloquiumcoffee/haploid-cell-colony-formation
  12. Noirot, M. (1978). Polyploïdisation de caféiers par la colchicine: Adaptation de la technique sur bourgeons axillaires aux conditions de Madagascar: Mise en évidende de chimères périclines stables. Café, Cacao Thé(Francia). 22(3), 187-194.
  13. Orozco, F. J., & Cassalett, C. (1974). Relación entre las características estomáticas y el número cromosómico de un híbrido interespecífico en café. Revista Cenicafé. 25(2), 33-50. http://hdl.handle.net/10778/1111
  14. Raghuramulu, Y., & Prakash, N. S. (1996). Haploidy in coffee. In Jain S.M., Sopory S.K., Veilleux R.E. (Eds.), Vitro haploid production in higher plants. Current Plant Science and Biotechnology in Agriculture (Vol. 25, pp. 349-363). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1858-5_18
  15. Reddy, V.S., Leelavathi, S., & Sen, S.K. (1985). Influence of genotype and culture medium on microspore callus induction and green plant regeneration in anthers of Oryza sativa. Physiologia Plantarum, 63, 309-314. https://doi.org/10.1111/j.1399-3054.1985.tb04271.x
  16. Rodríguez-Serrano, M., Bárány, I., Prem, D., Coronado, M. J., Risueño, M. C., & Testillano, P. S. (2012). NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. Journal of Experimental Botany. 63(5), 2007-2024. https://doi.org/10.1093/jxb/err400
  17. Sharp, W., Caldas, L., Crocomo, O., Monaco, L., & Carvalho, A. (1973). Production of Coffea arabica callus of three ploidy levels and subsequent morphogenesis. Phyton,31(2), 67-74.
  18. Sreenivasan, M., Prakash, N., & Mishra M. (1992). Evaluation of some indirect ploidy, indicators in Coffea L. Café, Cacao Thé(Francia). 36(3). 199-205.
  19. Touraev, A., Indrianto, A., Wratschko, I., Vicente, O., & Heberle-Bors, E. (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sexual Plant Reproduction, 9(4), 209-215. https://doi.org/10.1007/BF02173100
  20. Zoriniants, S., Tashpulatov, A.S., Heberle-Bors, E., & Touraev, A. (2005). The role of stress in the induction of haploid microspore embryogenesis. En C. Palmer., W.A. Keller & K.J. Kasha (Eds.) Haploids in Crop Improvement II. Biotechnology in Agriculture and Forestry (Vol. 56). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26889-8_3
  21. Zur, I., Dubas, E., Krzewska, M., Janowiak, F., Hura K., Pociecha E., B?czek-Kwinta, R., & Plazek, A. (2014). Antioxidant activity and ROS tolerance in triticale (x Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell, Tissue and Organ Culture. 119(1), 79-94. https://doi.org/10.1007/s11240-014-0515-3

Most read articles by the same author(s)